

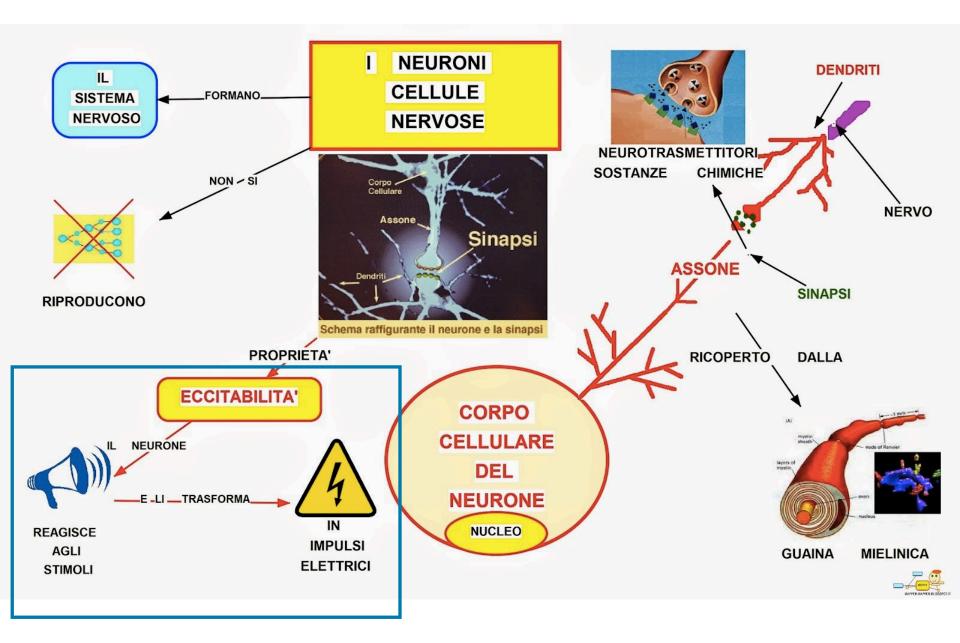
Argomento trattato:

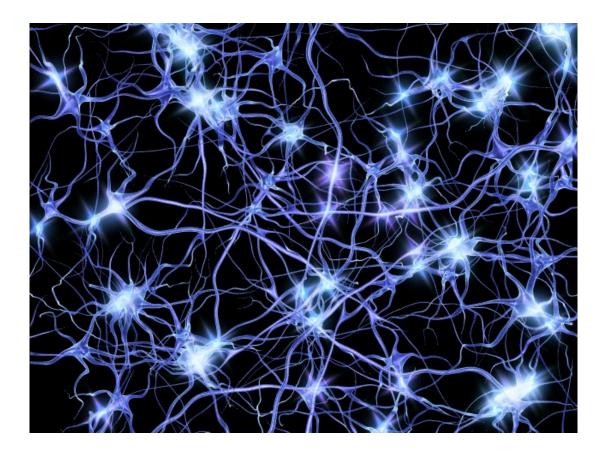
La stimolazione cerebrale transcranica: quali effetti sulla malattia?

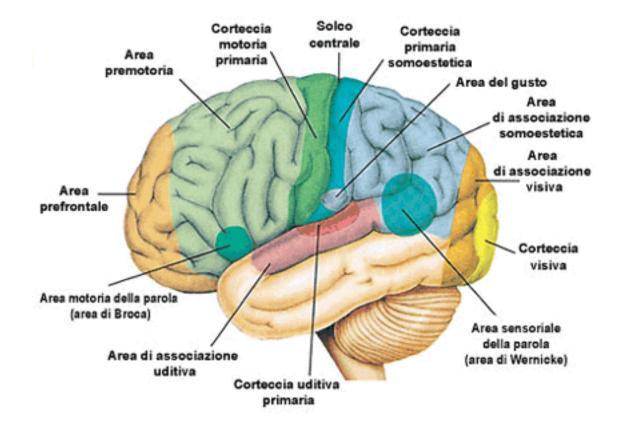
Moderatore: M. Bologna (Roma) Relatore: L. Avanzino (Genova)

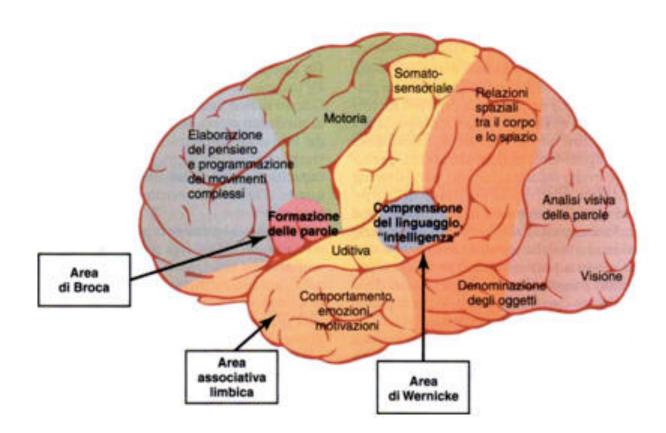


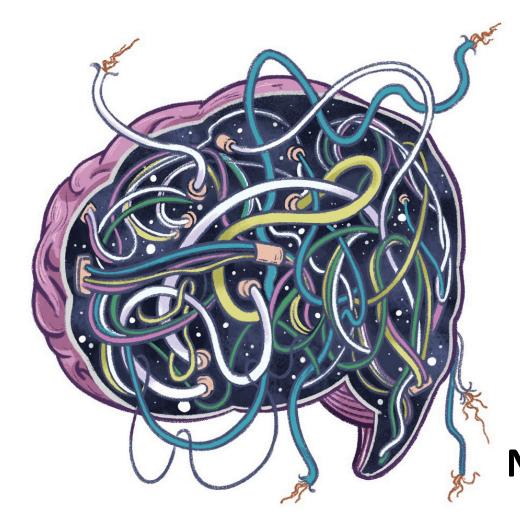
La stimolazione cerebrale transcranica: quali effetti sulla malattia


Laura Avanzino


Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università degli Studi di Genova IRCCS Policlinico San Martino, Genova

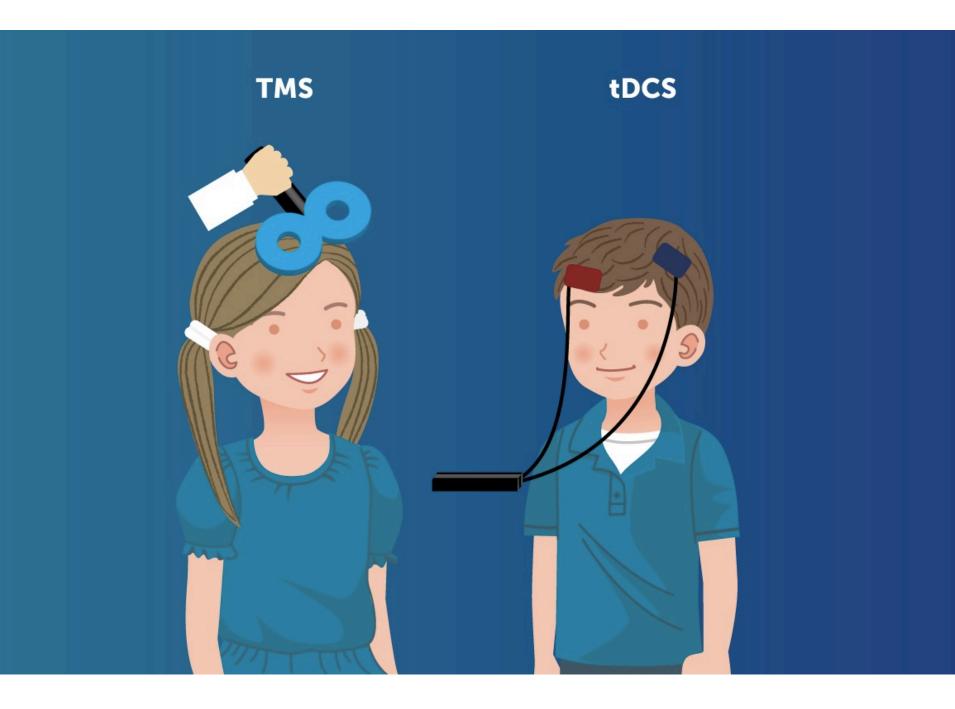


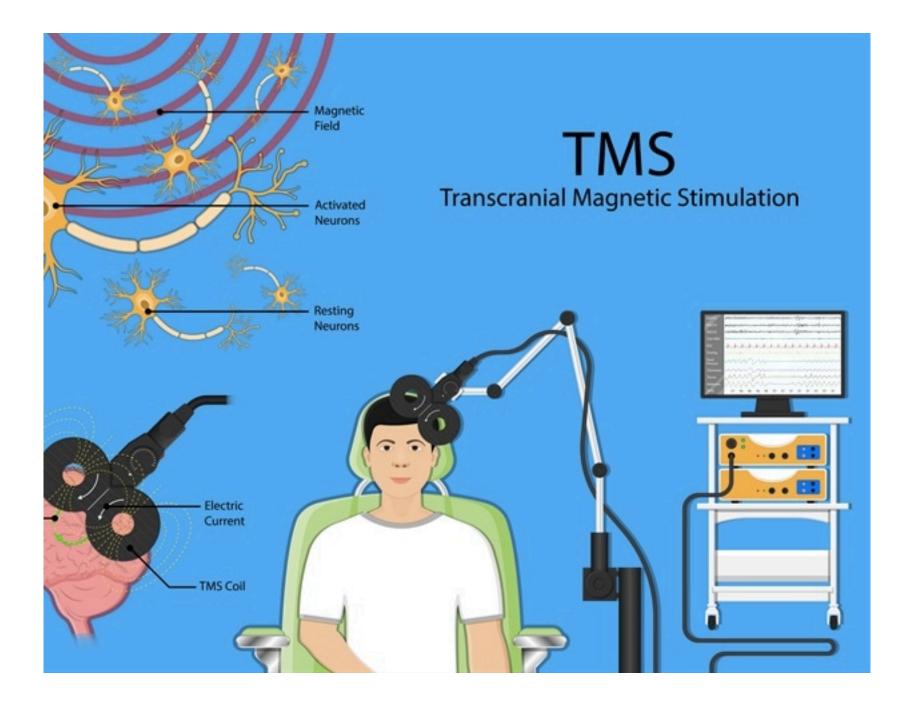




Neuroplasticità

- E' la capacità delle cellule del Sistema Nervoso (NEURONI) di andare incontro a modificazioni strutturali e funzionali in risposta:
 - ad eventi fisiologici (ad es. durante lo sviluppo)
 - a stimoli ambientali (ad es. l'apprendimento)
 - ad eventi patologici (ad es. lesioni cerebrali)





LE CONNESSIONI TRA I NEURONI POSSONO ESSERE MODIFICATE, **MODULATE**, **AGGIUSTATE SE NON FUNZIONANTI CON LA NEUROMODULAZIONE?**

Neuromodulazione

- La neuromodulazione è "l'alterazione della attività nervosa attraverso la somministrazione mirata di uno stimolo, quali stimoli elettrici, a specifici siti neurologici nel corpo".
- Viene effettuata per normalizzare o modulare tessuto nervoso funzione.

Stimolazione Magnetica Transcranica ripetitiva

Correnti indotte nell'encefalo da campi magnetici transitori con intensità (1.5–2.5 Tesla) e direzione di flusso variabile

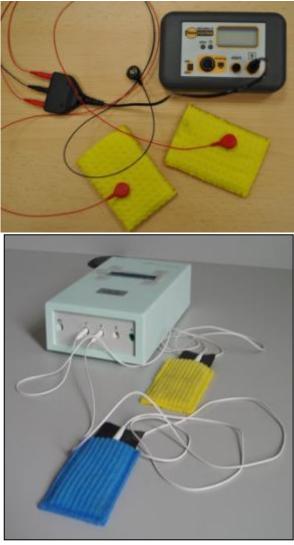
Stimolazione Magnetica Transcranica ripetitiva

A seconda della frequenza del treno di stimoli magnetici (numero di stimoli magnetici in 1 secondo)

ALTA FREQUENZA

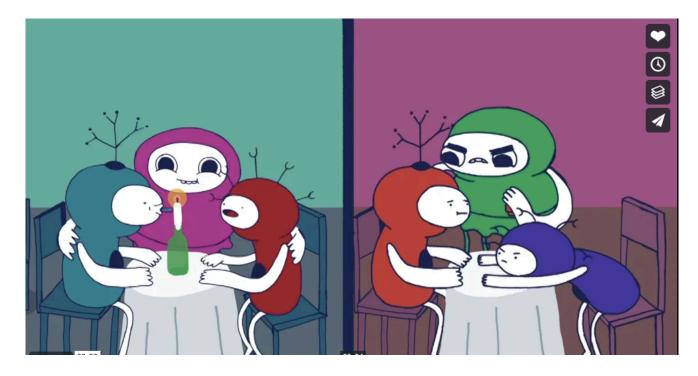
Più di 5 stimoli al secondo: ECCITATORIA

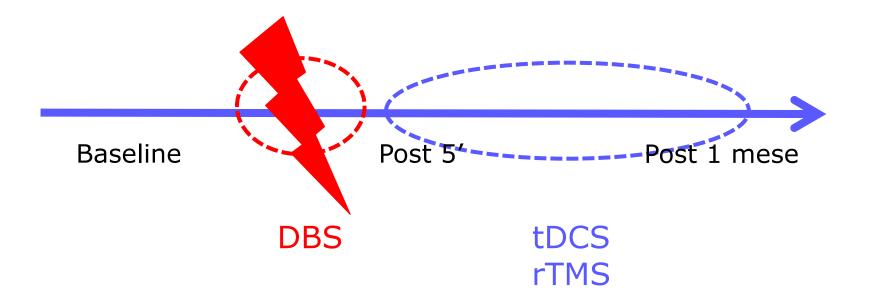
BASSA FREQUENZA


1 stimolo al secondo: INIBITORIA

Stimolazione Transcranica a corrente diretta

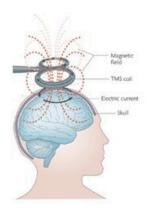
Correnti continue (DC) a bassa intensità(<2mA) applicate sullo scalpo, al di sopra dell'area che viene modulata




Stimolazione Transcranica a corrente diretta

A seconda del posizionamento degli elettrodi (polo positivo e polo negativo)

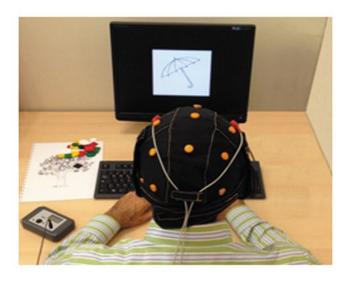
ANODICA: ECCITATORIA


CATODICA: INIBITORIA

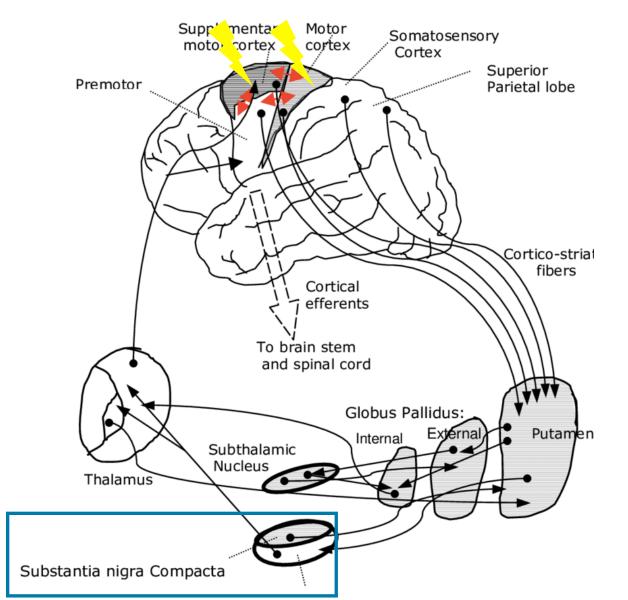
Effetto durante l'applicazione → Applicazione cronica Modificazioni **postume** indotte → applicazione ciclica

rTMS vs tDCS

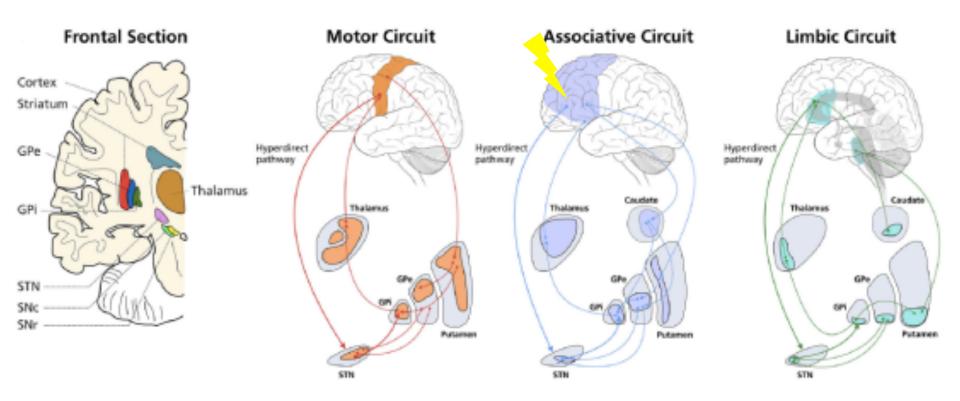
- Dura fino a ore
- Buona risoluzione spaziale e temporale
- Protocolli ben consolidati
- Costoso
- Rischio di convulsioni
- Limitato alle aree cerebrali superficiali
- Può provocare mal di testa transitorio
- Nessuna buona condizione di controllo



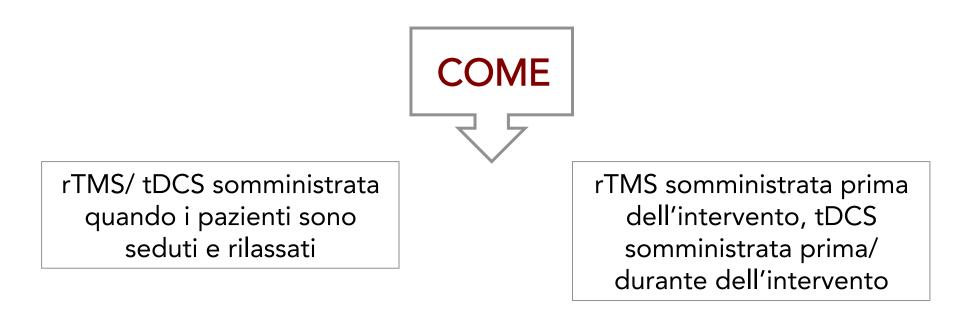
- In generale a basso costo
- Basso rischio di eventi avversi
- Condizioni di controllo affidabili
- Scarsa risoluzione spaziale e temporale
- Limitato alle aree cerebrali superficiali
- Modulazione simultanea dell'area sotto l'elettrodo di riferimento
- Può provocare mal di testa transitorio


Vantaggio tDCS

Neuromodulazione contemporanea all'esecuzione di un compito o alla riabilitazione

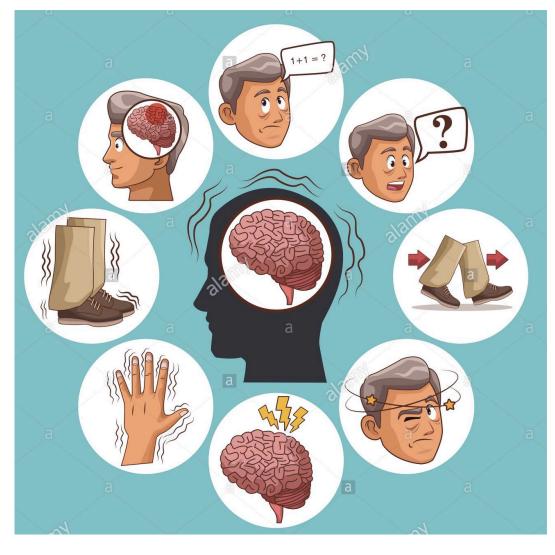


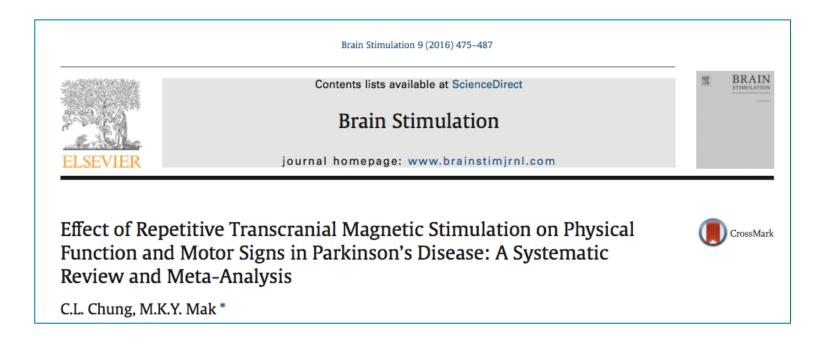
Neuromodulazione non invasiva: perché nella malattia di Parkinson?



Neuromodulazione non invasiva: perché nella malattia di Parkinson?

Neuromodulazione non invasiva: creazione di un intervento


Il razionale dell'uso della neuromodulazione non invasiva come strumento terapeutico è di fornire ulteriori benefici al trattamento convenzionale, in particolare per i sintomi refrattari o nei pazienti in cui gli approcci chirurgici sono controindicati


Neuromodulazione non invasiva: effetti sulla malattia di Parkinson

Sintomi motori

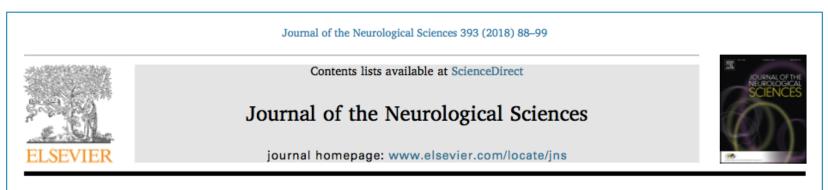
Sintomi non motori

Stimolazione magnetica transcranica: effetto sui sintomi motori

Characteristics of t	he 22 i	included	trials.
----------------------	---------	----------	---------

First author, year	Study	Sample size	H&Y (mean ±SD)	Stimul	ation parameters				Stimula	tion	Assessme	nt	
	design			Freq	Intensity	Coil type	Total pulses	Location	Status	Sham procedure	Status	Session schedule	Follow up
Arias et al., 2010 [45]	Parallel	18 (E = 9, Con = 9)	2-4	1	90% RMT (FDI)	С	100	Bil FDI M1	On	Tilted coil	On & Off	10×/2 weeks	1 week
Benninger et al., 2011 [46]	Parallel	26 (E = 13, Con = 13)	2-4	50	80% AMT (APB)	с	1200	Bil APB M1; Bil DLPFC	On	Sham Coil	On & off	8×/2 weeks	1 month
Benninger et al., 2012 [47]	Parallel	26 (E = 13, Con = 13)	2-4	50	80% AMT (APB)	с	600	Bil APB M1	On	Tilted coil	On & Off	8×/2 weeks	1 month
Börnke et al., 2004 [48]	Cross over	12	$1.54~(2.25\pm0.8)$	10	90% RMT (ADM)	F8	1000	More affected side ADM M1	Off	Tilted coil	Off	1	No
Brusa et al., 2006 [49]	Cross over	10	NR	1	90% RTM	F8	900	SMA	Off	Tilted coil	On & off	1	No
del Olmo et al., 2007 [50]	Parallel	13 (E = 8, Con = 5)	1-3	10	90% RMT (FDI)	F8	450	DLPFC	On	Tilted coil	On	10×/10 days	No
Filipović et al., 2009 [51]	Cross over	10	NR	1	~90% RMT	F8	1800	More affected side FDI M1	On	Sham Coil	On & Off	4×/4 days	No
[51] Hamada et al., 2008 [52]	Parallel	98 (E = 55, Con = 43)	2-4	5	110% AMT (TA)	F8	1000	SMA	On	Realistic sham	On	8×/weekly	1 month
Kang et al., 2010 [53]	Cross over	11	2.5-3	25	100% RMT (FDI)	F8	1500	Left FDI M1	On	NR	On	1	No
(55) Khedr et al., 2003 (54)	Parallel	36 (E = 17, Con = 19)	2-3	5	120% RMT (ADM)	F8	2000	EDB M1 & Bil ADM M1	Off	Tilted coil	Off	10×/10 days	1 month
[54] Khedr et al., 2006 [55]	Parallel	20 (E = 10, Con = 10)	E:3.5 ± 0.7 C:3.8 ± 0.9	10	100% RMT (FDI)	F8	3000	EDB M1 & Bil ADM	Off	Occipital Stimulation	Off	6×/6 days	1 month
Koch et al., 2005 [32]	Cross over	8	NR	L:1 H:5	L:90% RMT H:110% RMT	F8	900	SMA	On	Tilted coil	On	1	No
Lefaucheur et al., 2004 [33]	Cross over	12	3.4 ± 0.2	L:0.5 H:10	80% RMT (FDI)	F8	L:600 H:2000	Left M1 hand area	Off	Sham coil	Off	1	No
Lomarev et al., 2006 [56]	Parallel	18 (E = 9, Con = 9)	2-4	25	100% RMT (APB)	F8	1200	Bil APB M1 & Bil DLPFC	On	Inactive coil surface	On & Off	8×/4 weeks	1 month
Maruo et al., 2013 [57]	Cross over	21	3.1 ± 0.5	10	100% RMT (EHB)	F8	1000	BIL EHB M1	On	Realistic Sham	On	3×/3 days	No
Nardone et al., 2013 [58]	Cross over	4	NR	1	~90% AMT (FDI)	F8	1800	Right/left DLPFC	On	Sham coil	On	1	No
Okabe et al., 2003 [59]	Parallel	56 (E = 28, Con = 28)	E:3.11 ± 0.92 C = 2.92 ± 0.83	0.2	110% AMT (FDI)	с	100	Bil FDI M1	On	Realistic Sham	On	8×/weekly	1,2 month
Pal et al., 2010 [60]	Parallel	22 (E = 12, C = 10)	NR	5	90% RMT	F8	600	Left DLPFC	On	Tilted coil	On	10 days	1 month
Sedlácková et al., 2009 [61]	Cross over	10	NR	10	100% RMT	F8	1350	Left PMD/left DLPFC	Off	Occipital Stimulation	Off	1× for each site	No
Shirota et al., 2013 [34]	Parallel	102 (34H, 34L, 34Con)	2-4	H:10 L: 1	110% AMT (TA)	F8	1000	SMA	On	Realistic sham	On	8×/weekly	12 weeks
Siebner et al., 1999 [62]	Cross over	12	1-2.5 FDI	5	90% RMT	F8	2250	More affected side FDI M1	Off	Tilted coil	Off	1	No
Siebner et al., 2000 [63]	Cross over	10	1-2.5	5	90% RMT (FDI)	F8	2250	More affected side FDI M1	Off	Tilted coil	Off	1	No

H&Y, Hoehn and Yahr Stage; Freq, frequency; E, experimental group; Con, control group; RMT, resting motor threshold; C, circular; F8, figure of 8; FDI, first dorsal interosseous; M1, primary motor cortex; AMT, active motor threshold; Bil, bilateral; APB, abductor pollicis brevis; ADM, abductor digiti minimi; NR, not reported; SMA, supplementary motor area; DLPFC, dorsolateral prefrontal cortex; TA, tibialis anterior; EDB, extensor digitorium brevis; EHB, extensor hallucis brevis; PMD, dorsal premotor cortex; H, high-frequency group; L, low-frequency group.


22 studi clinici, per lo più somministrata su aree che controllano il movimento GIALLO /VERDE

Neuromodulazione non invasiva: effetti sulla malattia di Parkinson

- Miglioramento sintomi motori (valutati con la scala clinica UPDRS III: rigidità e lentezza nei movimenti ... efficacia scarsa sul tremore)
- Più efficace quando somministrata sull'area motoria primaria
- Più efficace un ciclo di sessioni ripetute rispetto alla singola sessione

Stimolazione Magnetica Transcranica ripetitiva: sintomi non motori

Review Article

Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex to alleviate depression and cognitive impairment associated with Parkinson's disease: A review and clinical implications

René Randver^{a,b,*}

	Control	Target	Patients	rTMS protocol	Outcome(s)
RCTs					
Fregni [35]	Active rTMS + placebo drug		42 (16f/26 m)	f8c, 15 Hz, 40 tr, 5 s/tr, RMT 110%	HDRS ↓ & BDI ↓
	Sham rTMS + fluox. 20 mg/c	1	33 MDD,	3000 pulses/session	d10, FU d40
			9 minor d.	10 sessions/2 weeks	Sign. for rTMS and fluox.
Boggio et al. [10]	Active rTMS + placebo drug		25	f8c, 15 Hz, 40 tr, 5 s/tr, RMT 110%	HDRS ↓ & BDI ↓
	Sham rTMS + fluox. 20 mg/c	1	MDD	3000 pulses/session	d10, FU d40
Discould find		ina mag	minor d.	10 sessions/2 weeks	Sign. for rTMS and fluox.
Dias et al. [24]	Active rTMS + placebo drug		22	f8c, 15 Hz, 40tr, 5 s/tr, RMT 110%	HDRS & BDI
	Sham rTMS + fluox. 20 mg/d			ITI 10s, 3000 pulses/session 10 sessions/2 weeks	d10; sign. for rTMS and fluox.
Propert et al. (27)	Active TME 1 placebe drug	IDLPFC	26 (10f/16 m)	f8c, 15 Hz, 40 tr, 5 s/tr, RMT 110%	MINDE & DIVI
Fregni et al. [37]	Active rTMS + placebo drug Sham rTMS + fluox. 20 mg/c		26 (107/16 m) MDD	ITI 10s, 3000 pulses/session	HDRS [& BDI] d10. FU d40
	29 healthy controls		minor d.	10 sessions/2 weeks	Sign. for rTMS and fluox.
Cardoso et al. [15]	Active rTMS + placebo drug	IDLPFC	21	f8c, 5 Hz, 50tr, 15 s/tr, RMT 120%	HDRS 1 & BDI 1
cardoo er an (10)	Sham rTMS + fluox. 20 mg/		MDD	3750 pulses/session	d20; sign, for rTMS and fluox.
	Shahi 11345 + Huox. 20 hig/e		3100	12 sessions/4 weeks	d20, sign. for 11365 and huox.
Pal et al. [88]	Active rTMS + Sham rTMS	IDLPFC	22 (11f/11 m)	f8c, 5 Hz, 12tr, 10s/tr, RMT 90%	Actiive rTMS group
i in ci in [ooj			MDD	ITI 20s, 600 pulses/session	HDRS & BDI
				10 sessions/2 weeks	d11, FU d41
Benninger et al. [8]	Active rTMS + Sham iTBS	bIDLPFC	26	Cc, iTBS, RMT 80%	After DLPFC stim. BDI ↓
		blM1		8 sessions/2 weeks	but not at FU (1 mo after stim.)
Shin et al. [102]	Active rTMS + Sham rTMS	IDLPFC	18 (10f/8 m)	f8c, 5 Hz, 12 tr, 10s/tr, RMT 90%	Actiive rTMS group
			MDD	ITI 10s, 600 pulses/session	HDRS ↓, MADRS ↓ & BDI ↓
				10 sessions/2 weeks	on d10 & FU d30
Brys et al. [14]	Active rTMS + Sham rTMS	IDLPFC	61	f8c, 10 Hz, 50tr, 4 s/tr	IDLPFC + blM1 and IDLPFC only
		5IM1	61 MDD	IDLPFC 2000 pulses/session;	HDRS, BDI diff. n.s.
				M1 2 × 1000; 10 sessions/2 weeks	compared to sham
Yokoe et al. [119]	Active rTMS + Sham rTMS	bIDLPFC,	19	f8c, 10 Hz, 2x10tr, 5 s/tr, RMT 100%	AES, MADRS-S, SRS
		blM1, blSMA		ITI 25 s, 1000 pulses/session	& PDQ-39 diff. n.s.
				3 × 3 sessions	compared to sham
Open-label studies					
Potrebić et al. [93]	None	blPFC,	8	Cc, 0.5 Hz, RMT 80%	HDRS ↓
Potteble et al. [90]	wone	fr, par, occ	5 MDD	5 stim per site/20 per hemisphere	d10, FU d17 & d24
	-	ir, par, occ	3 dysth.	5 schn per site/20 per nennsphere	d10, F0 d17 & d24
Dragasevic et al. [26]	None	blPFC	10 (4f/6 m)	Cc, 0.5 Hz, 5 tr, 0.1 ms/tr, RMT 110%	HDRS 1 and BDI 1
seafangerie er an (20)		1000 1000	4 MDD	ITI 60s, 2×100 pulses/session	d10, FU d21 & d30
			6 dysth.	and a star burney according	
Epstein et al. [29]	None	IDLPFC	14 (5f/9 m)	f8c, 10 Hz, 20tr, 5 s/tr, RMT 110%	HDRS BDI HAMA
cherry of an fact			14 MDD	ITI 25 s, 1000 pulses/session	d13, FU 3-6 weeks
	· · · · ·			10 days/19 sessions	PDQ-39, BPRS, CGI diff n.s.

Overview of studies applying rTMS to the DLPFC to alleviate mood symptoms/depression in PD patients.

Depressione: area prefrontale (BLU)

Overview of studies applying rTMS to the DLPFC to alleviate cognitive impairment in PD patients.

Study	Control	Target	Patients	rTMS protocol	Outcome(s)
RCTs			_		
Koch et al. [53]	Active rTMS + Sham rTMS 10 healthy controls	rDLFPC SMA	10 (4f/6 m)	f8c, 5 Hz, 5 tr, 10s/tr, RMT 100% ITI 30s, 250 pulses/session	rTMS to rDLFPC: time perception † In the PD group
Boggio et al. [10]	Active rTMS + placebo drug Sham rTMS + fluox. 20 mg/d	IDLPFC	25 MDD	f8c, 15 Hz, 40 tr, 5 s/tr, RMT 110% 3000 pulses/session	WCST Perserv. errors ↓ Hooper ↑ Stroop (col. words & interference) ↑
Fregni et al. [37]	Active rTMS + placebo drug. Sham rTMS + fluox. 20 mg/d 29 healthy controls	IDLPFC	minor d. 26 (10f/16 m) MDD minor d	10 sessions/2 weeks f8c, 15 Hz, 40 tr, 5 s/tr, RMT 110% ITI 10s, 3000 pulses/session 10 sessions/2 weeks	in both groups on d10, FU d40 MMSE n.s. for rTMS and fluox. d10, FU d40
Cardoso et al. [15]	Active rTMS + placebo drug. Sham rTMS + fluox. 20 mg/d	IDLPFC	21 21 MDD	f8c, 5 Hz, 50tr, 15 s/tr, RMT 120% 3750 pulses/session 12 sessions/4 weeks	MMSE ↓ d20; sign. for rTMS
Pal et al. [88]	Active rTMS + Sham rTMS	IDLPFC	22 (11f/11 m) MDD	f8c, 5 Hz, 12tr, 10s/tr, RMT 90% ITI 20s, 600 pulses/session 10 sessions	MMSE n.s. for rTMS and fluox. d11, FU d41
Srovnalová et al. [105]	Active rTMS + Sham rTMS	rDLPFC lDLPFC	10 (4f/6 m)	f8c, 25 Hz, 30 pulses × 10 sets RMT 80%; 600 pulses/session	rTMS to rDLFPC: TOLDX \uparrow
Open-label studies [29]	None	IDLPFC	14 (5f/9 m) 14 MDD	f8c, 10 Hz, 20tr, 5 s/tr, RMT 110% ITI 25 s, 1000 pulses/session	DRS (total/concept./memory) † d10 RBANS (Recall) pos. trend
Furukawa et al. [38]	None	Fz	6 (3f/3 m)	10 days/19 sessions Cc, 0.2 Hz, RMT 120% 100 pulses/session 12 sessions/1200 pulses	BTA neg. trend; FU diff. n.s. TMT-B execution time ↓ SDS ↓ 20 m WT ↓ WCST (categories ↑ perserv. errors ↓ Total errors ↓); WAIS-R unchanged
Sedláčková et al. [101]	None	IDLFPC, IPMd, IOCC	10 (1f/9 m)	10 Hz, 15 × 30 pulse tr, RMT 100% ITI 10s, 450 pulses/session	No effect on choice reaction time EF or motor performance
Málly et al. [69] > 65	None	blDLPFC Brainstem	66	3 sessions (1 for each area) 3 groups (1 Hz, 5 Hz, 5 + 1 Hz)* 12 sessions/7 days	1 Hz: TMT B-A time ↓ in patients aged But not at 6 mo FU

Disturbi cognitivi (attenzione etc.): area prefrontale

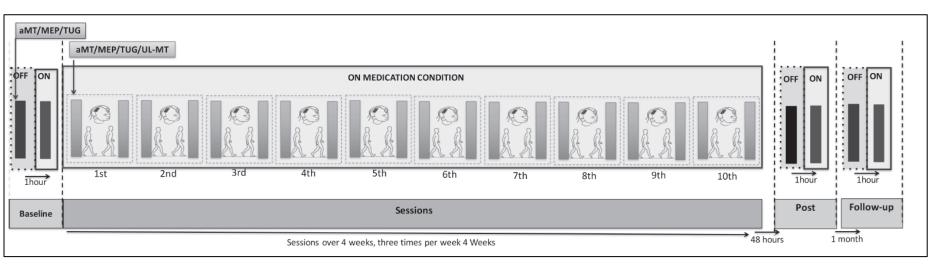
Neuromodulazione non invasiva: effetti sulla malattia di Parkinson

- La corteccia dorsolaterale prefrontale dell'emisfero sinistro è, sulla base degli studi effettuati finora, l'obiettivo di stimolazione più favorevole in cui è possibile ottenere una moderata riduzione della depressione, anche con alcuni effetti benefici sui sintomi cognitivi
- La maggior parte degli studi disponibili sono stati condotti utilizzando rTMS ad alta frequenza (uguale o superiore a 5 stimoli/secondo) nell'emisfero sinistro

tDCS: Funzioni motorie

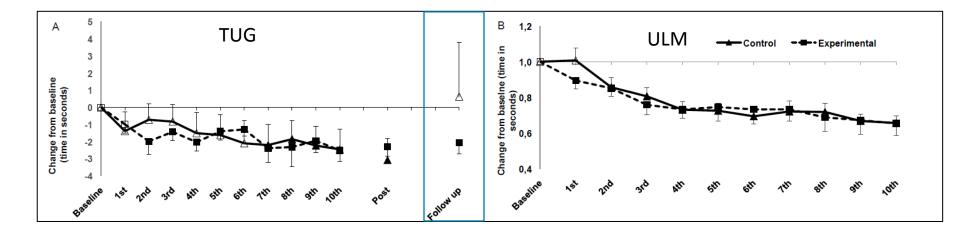
eference	PD patients characteristics	Stimulation			Study design	Description	Outcomes	Effect size (Cohe	n's d)		
		Intensity (mA)/Current density (mA/cm ²)	Duration (min)/sessio	Site on¢anode/cathode)			tDCS Sham Follow-up	Follow-up			
										tDCS	Sham
Benninger et al. (2010)	N = 25; mean age 63.9 yr; mean disease duration 9.9 yr; H&Y II-III	2.0/0.021	20/8	M1 + PMC (L) or PFC (L) (1 target area per session, each area 4×)/mastoids (L+R)	Randomized; double-blind; sham	Stimulation during ON- phase; during rest; 1 and 3 months follow-up	UPDRS-IIIª UL performanceª Gait ª	ON: -0.2 OFF: -0.3 ON: -1.4 A OFF: -1.8 A ON: -0.8 OFF: -0.9 A	ON: -0.2 OFF: 0.2 ON: -0.6 OFF: -0.8 ON: -0.5 OFF: 0.1	1 month: ON: 0.1 OFF: -0.3 3 months: ON: 0.1 OFF: 0.0 1 month:	1 month: ON: 0.1 OFF: 0.3 3 month: ON: 0.0 OFF: 0.1 1 month:
						Motilità Cammir	arto supe 10	eriore		ON: -1.2** OFF: -1.6** 3 months: ON: -1.2** OFF: -1.5** 1 month:	ON: -0.6 OFF: -0.6 3 months: ON: -0.6 OFF: -0.6 1 month:
					·					ON: -0.9° OFF: -0.8 3 months: ON: -0.8 OFF: -0.2	ON: 0.0 OFF: 0.2 3 month ON: 0.1 OFF: 0.0
Valentino et al. (2014)	N= 10; mean age 72.3 yr; mean disease duration 11 yr;	2.0/0.057	20/5	M1 (corresponding to starting leg after	Randomized; double-blind; cross-over; sham	Stimulation in ON and during rest; 2 days, 2 weeks and 4	UPDRS-III SWS FOG-Q	۸ ۸ ۸	2 days, 2 weeks and 4 weeks▲ 2 days. 2		
	H&Y II-IV			FOG)/orbitofronta cortex	al	Freezir Camm	ng ino e pass	aggi po	sturali		

Broeder, 2015


tDCS + riabilitazione: Funzioni motorie

J Rehabil Med 2016; 48: 819-823

SHORT COMMUNICATION

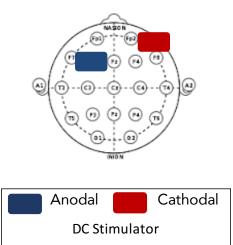

DOPAMINE-INDEPENDENT EFFECTS OF COMBINING TRANSCRANIAL DIRECT CURRENT STIMULATION WITH CUED GAIT TRAINING ON CORTICAL EXCITABILITY AND FUNCTIONAL MOBILITY IN PARKINSON'S DISEASE

Adriana Costa-Ribeiro, PhD¹, Ariadne Maux, PT², Thamyris Bosford², Yumi Tenório², Déborah Marques, MSc², Maíra Carneiro, MSc², Michael A. Nitsche, PhD^{3,4,5}, Alberto Moura Filho, PhD⁶ and Kátia Monte-Silva, PhD²

- 22 pazienti con MP
- 11 pazienti trattamento con tDCS eccitatoria area a funzione motoria
- 11 pazienti tDCS finta
- Test del cammino

Subito dopo 20 minuti tDCS, riabilitazione 10 sessioni

In termini di mobilità funzionale, la tDCS non ha aumentato l'entità dell'effetto dell'allenamento dell'andatura, ma ha reso il suo effetto più veloce (dalla seconda sessione) e più duraturo (fino al follow-up di 1 mese)

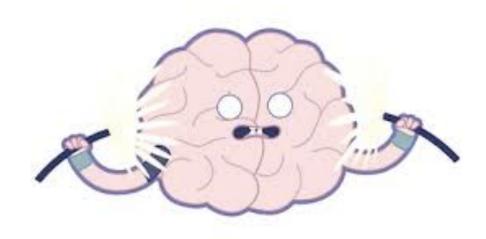

tDCS : sintomi motori

- Stimolazione eccitatoria area motoria (controlaterale verso il lato più colpito, bilaterale, dominante)
- Dati incoraggianti su cammino, freezing, movimenti arto superiore
- Dati preliminari sull'effetto di riabilitazione + tDCS

tDCS : sintomi non motori

ELSEVIER journal homepage: www.brainstimjrnl.com Cognitive Impairment Receiving	ELSEVIER	Contents lists available at ScienceDirect Brain Stimulation journal homepage: www.brainstimjrnl.com	風	BRAIN	Trial of t-DCS Versus Sham in Parkinson Patients With Mild Cognitive Impairment Receiving	CrossMark
---	----------	---	---	-------	---	-----------

- 24 pazienti con MP e iniziale deficit cognitivo
- Allenamento cognitivo di 4 settimane + tDCS reale (n = 12) vs allenamento cognitivo di 4 settimane + tDCS finta(n = 12)
- Eccitatoria/ 2mA / 20 min / corteccia prefrontale
- Valutazione a 4 settimane e a 16 settimane
- Batteria neuropsicologica


Funzioni esecutive Memoria

Within group mean delta changes (d') differences (SD) of each single corrected score and between groups delta changes comparison (*P* value) at 4-week and after 16-week follow up.

	0–4 weeks				0–16 weeks					
	Real t-DCS Mean d' (SD)	Sham t-DCS Mean d' (SD)	P value#	Cohen's effect size d	Real t-DCS Mean d' (SD)	Sham t-DCS Mean d' (SD)	P value#	Cohen's effect size d		
UPDRS-III	-8.00 (9.57)	-0.30 (24.25)	0.707	0.182	0.17 (11.44)	13.83 (14.20)	0.275	0.154		
STAI-Y	7.56 (15.74)	0.09 (14.08)	0.636	0.5	5.44 (7.92)	0.40 (13.15)	0.513	0.464		
PDQ-8	15.5 (8.35)	8.00 (7.62)	0.327	0.938	17.00 (9.85)	10.00 (8.58)	0.594	0.758		
BDI-II	-7.00 (8.44)	-6.36 (7.13)	0.647	0.082	-4.22 (13.13)	-3.4 (8.59)	0.932	0.074		
MoCA	2.33 (2.24)	1.36 (1.36)	0.272	0.524	0.33 (2.45)	0.70 (1.7)	0.681	0.175		
RBANS Tot.	3.11 (8.19)	2.46 (13.2)	0.890	0.05	4.29 (12.74)	0.00 (11)	0.251	0.36		
List learning	0.33 (5.15)	2.36 (4.72)	0.488	0.411	1.71 (5.41)	0.56 (5.25)	0.794	0.216		
Story learning	1.22 (4.49)	-0.73 (3.93)	0.168	0.462	3.71 (5.74)	-0.44 (3.4)	0.077	0.879		
Immed. memory index	2.67 (16.55)	2.09 (12.49)	0.395	0.039	12.57 (19.96)	0.33 (13.17)	0.075	0.724		
Complex figure copy	0.78 (2.44)	0.82 (2.82)	0.453	0.015	-0.71 (3.15)	-0.44(3.88)	0.583	0.076		
Orientantion line	0.89 (4.04)	-0.09(2.88)	0.638	0.279	2.57 (2.82)	-0.56 (3.91)	0.115	0.918		
Visuo-spatial index	5.44 (18.28)	6.36 (20.22)	0.691	0.047	2.78 (17.25)	3.10 (15.81)	0.987	0.019		
Naming	0.33 (0.71)	0.27 (0.47)	0.828	0.099	-0.29(0.49)	-0.22(0.44)	0.636	0.15		
Semantic fluency	-5.11 (3.62)	-3.73 (4.1)	0.871	0.357	-1.57 (3.99)	0.33 (2.5)	0.884	0.57		
Language index	-1.56 (9.84)	-0.46(6.82)	0.940	0.1299	-5.29(5.59)	-0.78 (6.63)	0.284	0.735		
Digit span	1.33 (2.92)	0.09 (1.22)	0.150	0.5541	0.57 (3.6)	-0.78 (1.56)	0.248	0.486		
Written coding test	-4.56 (5.2)	1.64 (2.46)	0.001	1.52	-2.00 (4.51)	2.11 (4.96)	0.383	0.867		
Attention index	1.78 (9.44)	2.00 (6.48)	0.796	0.027	-0.86 (16.64)	-1.56 (10.93)	0.342	0.049		
List recall	-1.33 (2.74)	1.00 (2.19)	0.040*	0.9394	0.57 (2.51)	0.89 (1.83)	0.396	0.146		
List recognition	-1.11 (2.37)	0.55 (3.14)	0.168	0.5967	0.29 (2.29)	-0.56(1.74)	0.641	0.418		
Story recall	1.56 (2.74)	-0.18 (1.72)	0.307	0.76	2.71 (3.5)	-0.22 (2.17)	0.105	1.00		
Figure recall	4.00 (3.28)	4.46 (2.58)	0.658	0.156	3.14 (3.63)	3.22 (2.99)	0.917	0.024		
Delayed memory index	0.44 (11.13)	10.27 (11.65)	0.027*	0.863	6.86 (11.61)	6.22 (9.95)	0.447	0.059		

Conclusioni

- Dati sperimentali supportano l'utilizzo della neuromodulazione come terapia non farmacologica nella malattia di Parkinson
- Ad oggi, però, i livelli di evidenza di efficacia non sono ancora ottimali
- E' ancora necessario ottenere evidenze attraverso studi clinici ben pianificati e con un alto numero di pazienti ed implementare i protocolli grazie all'uso delle nuove tecnologie

Grazie per l'attenzione!

EMERGENZA COVID-19 I nostri neurologi a tua disposizione!

12 Giugno ore 15.00

Vivere con la distonia: domande aperte ai vostri neurologi

Nuovi servizi attivi per aiutare i pazienti in questo periodo difficile!

• Numero verde neurologi 800146599

tutti i giorni dalle 15.00 alle 17.00

Numero verde supporto psicologico 800149626

tutti i giorni dalle 15.00 alle 17.00

Seguici anche sui Social

